PHYSICAL REVIEW E 69, 011108 (2004
Microscopic model of the actin-myosin interaction in muscular contractions
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We define and study a detailed many body model for the muscular contraction taking into account the
various myosin heads. The state of the system is defined by the position of the actin and by an internal
coordinate of rotation for each myosin head. We write a system of Fokker-Planck equations and calculate the
average for the position, the number of attached myosin heads, and the total force exerted on the actin. We also
study the correlation between these quantities, in particular between the number of attached myosin heads and
the force on the actin.
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I. INTRODUCTION engineers arrange the cylinders in an engine in such a way
that they work cooperatively.

Muscular cells have the ability to convert chemical en- We think that this cooperative behavior is very important
ergy, stored in ATP bonds, into mechanical energy. The detqr natural mqlecular motors, and that it is one of the main_
scription of this mechanism has been known for a long timeifférences with respect to man-made engines. However, this
and is described in many text booleich as Refd1—4)). It feature of molecular motors is not taken into account com-

involves a passive protein, called actin, which can contracPletGIy In many papers on the SUb.JeCt' wher_1 the musc_ular
contraction is modeled by the motion of a single effective

tEhe Ee” whgn I ISI dra}gg_ed t:_y olthterdpr(t)tetlns, callteq myosin, yosin head. In fact, usual models of muscular contractions
ach myosin molecuie IS articuiated Into two parts. on€ par nly involve the motion of a single myosin head: this was the

is fixed, the other part is a kind of head which can rotate,iqina| model of Hill. Others models are derived as a mean
around th.e fixed part. For a cell at résb neural exmtayo); field approximation from a many body theofyee, for ex-

the myosin head cannot reach and attach to the actin, due La‘?nple, Ref[10]).

the presence _of another protein called troponine. When a Our model takes into account explicitly the many body
neural excitation occurs, for example, if the muscle ispature of the problem, namely, the fact that myosin heads can
loaded, this results in an inhibition of the troponine mol- e attached or detached at random, which generates fluctua-
ecule, and the myosin heads, equipped with an ADP moltions and correlations which are not usually taken into ac-
ecule, can attach to the actin, lose the ADP molecule, andount by other models.

relaxes towards a new equilibrium positignith respect to Each myosin head involved in the muscular contraction is
the fixed part of the myosjnthus dragging the actin mol- described by an internal coordinate, which takes continuous
ecule. This process is stopped by a random arrival of an ATRalue. Moreover, the actin heads undergo chemical transi-
molecule on the attached myosin head, resulting in the detions between the attached and the detached configurations,
tachment of the head, and the hydrolysis of ATP into ADPat certain rates. We assume that the system is in the regime of
and phosphatéthis hydrolysis is catalyzed by the myosin high friction, and we write a Fokker-Planck system of equa-
head. During the whole cycle, an ATP molecule is consumedtions for the evolution of the probability distribution of the
(AG=30 kJ/mol), and the actin molecule is dragged overconfiguration system actifr myosin headssee Sec. )l We
around 10 nm. The first model was proposed by Hfs. study the evol_utl_on of symmetric observabl&zecs. Il a_nd
[5—7] for the original reference, and RdB] for a general IV), and specialize to the average value and correlations of

discussion of energy transduction in biolagfhe general the natural obsgrvables of the system, namely, the_number of
idea of this model, which is the basis of all subsequent mog@ttached myosin heads, the center-of-mass coordinate of the

els, is that a given myosin head fluctuates between two fregyster_n, and the total for.c.e actlng_ on actin. We can solve the
energy states with different potential energy curves, one Cor_E-EVOIUt'On O_f the_se quantities provided t_hat a natural Markov-
responding to the attached state, the other one to the ¢ @pproximation is madeee Sec. Y/ Finally, we calculate
tached state. This idea was also used in more recent work@€ Work(Sec. VI for large time. An appendix provides the

(see Ref[9] for a general review on molecular motors as etails of the calculations. .
well as Refs[10—18). In another papefl9], we shall treat a self-consistent but

less detailed model, representing the cycle by transition pro-

A rough estimation shows that the number of myosin King i he chemical .
heads which can attach to an actin filament is of the order of€SS€S taking into account the chemical reactions.

one thousand. In a way, the situation is similar to the one of
an engine with many cylinders, the role of a cylinder being
taken by the role of a myosin head, except that there are
much more myosin heads than cylinders, and that the myosin We refer to Refs[1,3] for the general biochemical de-
heads can attach or detach independently, whereas usuafigription of the motion of the actin and myosin, as well as for

Il. A FOKKER-PLANCK SYSTEM FOR THE MYQOSIN-
ACTIN INTERACTION
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FIG. 1. Interaction between the myosin heads and the actin fila- K — - Uy)
ment.
the terminology and notations.
We represent the actin flament by a moving massive line N N
and we denote by the abscissa of its center of mass referred y yM y
to a fixed origin. The various myosin arms which can attach FIG. 2. The cycle for a single myosin head.
to the actin filament are numbered by 1, ... n. These
arms spring out of a certain line, parallel to the actin. When (9U-(°)( N
the myosin head is attached to the actin, its equilibrium angle fi(O)= _ P =—xo(Yi—Y*). 3
with the myosin filament i®,: recent observations show that i

0,=m/6, corresponding to a poir®; on the myosin line
[20]. The actual position of the myosin head is measured b
an abscissg; with respect tdO; . When the myosin head is
not attached, the equilibrium angle of the arm is abéyt (1)) = . . = . S(t—

with 6y=7/2 (Ref. [ci]), correspogding to a valug* ot;@g: (d6(1))=0{d&i(1)d;(s))=2Dy 5, ot —s)dtds, (4
(see Fig. 1 The myosin head is submitted to the potentialwhere Dy, is a difusion coefficient related tey, by the
Ui(o)(yi) if it is not attached, and to the potentlafl)(yi) if Einstein relation

it is attached. Following Hill(see Refs[5,8]), we assume

7w IS the viscosity of the motion of the free myosin head and
%i(t) is a white noise force with

that these potentials are approximately harmonic and write 1 Dm
7w KgT’
U-(l)( = & 2 . . .
Y= S [ 6 is the Kronecker symbol and(t—s) is the Dirac func-
tion.]
Xo (2) If the myosin head nai. is attached, then
U yi) =5 (vi—y*)?+Uo. (1)
2 dy, dx
| o . dat - dt ©®
These potentials are approximatively represented in Fig.
2, showing the various levels of energy. , , (3) Finally, x is submitted to the following.
The state of the entire system actin myosin heads is (i) The force exerted by the attached myosin heads,
specified by the following data.
(a) The abscissa of the center of mass of the actin. . UMDy _
(b) The abscissg; of each myosin head. fM(y)=— Ty X if =1
(c) A Boolean variables;=0 or 1, which indicates if the :
myosin head noi is unattached ¢=0) or attached (i) The external forc& o(x), which includes the external
=1). In the usual Langevin description, the equations ofgading force— |F,| and a springlike force- Kx exerted by
motions are of the following type. the wall of the sarcomer,
(2) If the myosin head na.is not attached, we take a high
friction limit and Fo(X)=—|Fo| —KXx.
1 ) (iii) A white noise forcedé,
dy;=—f7(ypdt+d&(t), 2
LAY 1 M
dx=—| Fet+ >, 6..fD(y)) |dt+dé&(t), 6
where | Fet 2 0aafPy) &1, (8
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(d&(t))=0, (d&(t)dé(s))=2Dpd(t—s)dtds, We denote byr; the transformation of the variables
which changes the value ef only.
1 Da
T ke’ ™ nit{ed)={ei},
The probability distribution for the state of the system is e,=¢€c for k#i,

P(t,x,{€}.{yi}) at timet. We shall also assume that the
myosin head can attach to the actin filament with rate , —

Kio(Yi), i =€

k10 wheree;=1—¢.
€=0—¢=1, (8) So 7; is the operation of attachme(ur of detachmentof
the myosin head na.
One can write a Fokker-Planck equation for the probabil-
Koz ity distribution P(x,{¢€;},{y;},t) using the equations of mo-
€=1—¢=0. (9)  tion, Egs.(2), (5), and(6). One has

(10

or detach from the actin filament with ralg;(y;),

P L} iyt < y
#;Z}l 55i,0{k01(yi)P(x,ri{ek},{yk},t)—klo(yi)P(x,{ek},{yk},t)}+21 Se ki Y PO, Tif e Y )
M P 1 5 M 5
_kOl(yi)P(X,{Gk},{yk},t)}'f—izl 5Ei'0(9_yi(_%fi(0)(yi)P N &"'; 5Ei'1(7_yi)
1 M W M P 5 M ; 5
1
X —E<F(X)+§l 55i,1fi (yi)|P +i21 55i'0DM(9_yi2P+ Da 54—':2:1 5Eirlo’»_yi) P. (11)

Let us comment briefly on the origin of each term in Eq. Moreover, there is almost no information on the magni-
(11). In the right-hand side, the first sum is the contributiontude ofk,, andky, in the literature for the obvious reason

to P(x,{€}.{yi},t) of the detachment process of a myosinthat the attachment and detachment processes are very com-
head. Namely, the myosin head nds in an attached state plex chemical reactioni® vivo. So we take them as constant
€=1, and gets detached with probability;(y;)dt during  parameters. In fact, we will introduce later a Markovian hy-
the time intervaldt. The second sum is the corresponding pothesis which is a much stronger hypothesis.

term for the attachment process. The third sum is the contri- e define the probabilitP({e},t) that the myosin heads
bution of the current of probability of the motion of unat- 4re in stated ¢} at timet. This probability is the integral
tached myosin heads. It comes from the termg .y and y, of the full probability P(x,{€}.{y;},t) and

0 . .
(Lnm) T (yi?dt of the_eql_Jatlon of motion, Eq(2). T_he satisfies an equation obtained by integration of @d) over
fourth term is the contribution to the current of probability of . e spatial variables

the motions of the center of ma&ordinatex) of the actin
filam_erjt together with the moti_on _of the myosin heads which P e} ) M
are rigidly attached to the actin filament. It comes from the —:2 Se dkoaP(ri({€}),t)—kioP({e},1)]
term (1) Fet =I5, 1M (y;)1dt of Egs. (5) and (6). Ja =1
The last two sums are the diffusion currents coming from the M
white noise forces, either on the free myosin heads or on the + 2, Sl kioP(ri({&}) )~ koP({er},1)].
center of mass of the actin filament, together with the rigidly =1
attached myosin heads. (12)
We shall assume that the constaktg(y;) and kio(y)
are independent ofy. We can justify this hypothesis Let us denote by the total number of attached myosin
in the following manner. First the ratioky,/ky, is  heads, so thall is the random variable given by
exp(— (kg T)[UO(y) —UD(y)]). But UO(y)—u(y) M
is of the orderA G of the bond energy of ATP, so thlag; /k4o N= Z .
1
=1

is extremely small at normal temperature AG (13
~30 kJ/mole) and the variation dfy;/kio with y is also
extremely small. Thus we can assume thgt/kyy is con- We shall denote b¥ the total force exerted on the center-

stant. of-mass coordinat& of the actin filament,
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M

PRl kx-S, o (4 [ [ Acxtartyppoctal il baxiays

and we denote b the force exerted by the attached myosin &€ €qual, so that the common value is
heads on the actin filament,
y [ [ Acctantvbpocted v vaxiay)
d=— Se i 1
)(1i21 ei,lyl (15 _n!(M—n)!

T (AN, 19

The quantities= and® are random variables.
given that
. SYMMETRY WITH RESPECT TO THE MYOSIN
HEADS M

. S =n.
We shall assume in the sequel that the probability distri- 21 i
butionsP(x,{¢},{y;}.0) at timet=0 is symmetric with re-
spect to any permutation of the myosin heads, i.e., it is un- As a particular case, let us consider the probabftify,t)

changed by any permutation operation, that there are myosin heads attached to the actin filament,
so that we take foA the characteristic functiogn-p; . We
{e .y —1{es0) Yoyt (S have, using notations of Sec. I,
whereo is a permutation of1, ... M}.
It is clear that this property remains valid for abbecause P(n,t)= NE P{e}t), (20
=n

the operator in the second member of the evolution equa-
tions, Eq.(11), is also symmetric with respect to the permu- and all theP({e,}.t) are equal wheN=n, so that Eq(19)

tation S becomes
Let A(x,{€},{y/}) be an observable of the system which

is symmetric with respect to the operations of permutaBon nl(M—n)!
We denote by(A)(t) its average value with respect to the P{elt)=——— | “P(n,t). (21
probability P, namely, M

From Eqg.(12), we can obtain a differential equation for
(A= f f Axdeb i P {et iyt Hdx{dy}, P(n,t). We sum Eq(12) for all configurationg ¢} such that
tel (16 >e@=n. Then, using Eq(21),

where we integrate over all the space variablgs. We also dP(n,t)
denote by(A)(n,y) the average value d, restricted on the ot
configuration{ ¢} such that

=kpi(n+1)P(n+1t)+kig(M—n+1)P(n—1}%)
—[kig(M—=n)+kgin]P(n,t). (22

M
N=> =n This equation can be obtained directly, thanks to the hy-
=1 pothesis thaky; andk,y are independent dfy;}. It is well
known that it can be solved exactly if we assume that at
=0, P(n,0) is a binomial distributionP(n,t) remains bino-
(A)(n,t) mial at allt with averagep(t),

for a givenn, namely,

M!
=N§=:n f fA(x,{e|},{y|})P(x,{e|},{y|},t)dx{dy|}, P(n’t):n!(l\/l——n)![l_p(t)]Minp(t)n’ (23

17 with the average(t),
so that obviously

LI
M P)=""1"=1 ngo nP(n,t), (24)

(A= 2, (A)(n,D). (18)
" given explicitly by
Note that{A)(n,t) is not a conditional expectation. It is
only a restricted average over configurations viits n. p(t) = p(0)e~(kig*kodt 4 Kio (1—e (uotkonty,
Now it is clear that under the symmetry assumptionsifor Kio+ Ko1
andP, all the quantities in Eq(17), (25

011108-4
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IV. THE EVOLUTION OF AN OBSERVABLE
A. Decomposition of the variation

We rewrite Eq.(11) with slight rearrangements in the two summations,

IP(x{ ey} t) . - -
’ 1 (BE
Era— G .21 5ei,0P[XaTi({fl}),{yl}:t]_gl 0 P {et{yi},t) | +kig _21 8¢ AP, m{et {yiht)
1({a J M
—2 S oPOCTlaldyhb |+ | 524 3 0 ||| IFol +Kxt 2 8 i | P
ax =1 oy, =1
1 (M 2 M P
- (0) _
W(E O, oay [FOy)P] | +Da| o +E 3 15 P+DM(§1 5ei,0(9yi2)P- (26
|
Let A(x,{¢},{y|}) be a quantity which is symmetric with d(A)
respect to the permutatio® of the myosin heads. We can ( dt (n t))
obtain the derivatived(A)/dt)(n,t) of (A)(n,t) using Eq.
(26). We multiply Eq. (26) by A(x,{€},{yi}.t), integrate g M 9 \2
over the spatial variables, and sum over configuratians =Dp > f j P(—+2 55.,1—) Adx{dy,}
with N=n. We obtain four contributions, N=n gx =1 Ty
dA) (A (A ()| (A 0,3 [ [P (E Sqs Adx{dyl}
at MU= Tt dt dt /.’
(27) (29
corresponding to the four types of contributions to the right- C. Attachment and detachment processes

hand side of Eq(26), namely,(i) the contributions of detach-
ment processe@roportional tokg,), (ii) the contributions of
attachment process@sroportional tok,g), (i) the contribu-
tions of friction processegroportional to 14, and 1f),

At an instant of attachment or of detachment, the quantity
A varies discontinuously. Let us consider the detachment
process, given by the terms proportionalkg in Eq. (26).

and (iv) the contributions of diffusion processépropor- Ve have
tional toD, andDy,). d(A) M

These different contributions are studied below. ( (n,t) ) =k 2 | > 6. Of fA(X,{ﬂ}-{W})

N=n [i=1 "
B. Friction and diffusion processes XPx,mi({e}) {y},Hdx{dy,}

The contributions of these processesdi{@)/dt are ob- M
tained by multiplying the corresponding terms in the right- > s J f Ax{et iy
hand side of Eq(26) by A(x,{€},{y,}), integrating over the =

spatial variables, and summing over configuratipa$ with
> €/=n. After integration by parts, we obtain X P(x,{&} Ly 1 Hdx{dy}

o

)]

—+2 )

=~ 51&

(30

Using Eq.(19), the last sum in the square bracket reduces
to

|F0|+Kx+X12 5 ]y.) y
n!'(M—n)!
P by T GHGRY

n!'(M-—n)!
M!

Adx{dy}

(A)(n,1),

M
1 d
+7’—NZ f fZl 5ei,0fi(0)(yi)P<a_yA)dX{dyl}

M N=n = : and the sum over the configurations withe;=n gives a

(28 contribution

011108-5
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—kon(A)(n,t). (31

We rewrite the square bracket in the first sum of E3§)
as

M
3 0] [ AGntelbPeGed ik taxidyi)

M
+2 5ei,OJ J[A(X,{fl}:{)h})—A(X,Ti{ﬂ}a{)ﬁ})]
i=1
XPX,mi({e}) {yi},)dx{dy}. (32
In Eq. (32), let us consider the first summation. It is

(n+LH)!I(M—n—-1)!
M!

(AY(n+1t),

with =M 10¢,0=M—n. We sum this quantity over all con-

figurations withX €;=n, so that this term gives a contribu-
tion to Eq.(30), which is

(n+1)ko(AY(n+1}). (33

In Eqg. (32), we can calculate the contribution to E§0)
of the second summation as follows. It is

kox > 2 O, 1f J'A(XvTi{EI}-{YI})

N=n+1i=1
—AXxfab YD P {eal iyt dx{dy}. (34

Indeed, in the sum over configuratiofis}, we can use
{€} in P, provided thaSe;=n+1.
Let us define

(A a(xfet fyih) =0 AAX mi{e} {yi})
_A(X,{E|},{y|})], (35)

which is the jump ofA when the myosin head na.gets
detached, and

M
<5A>d<x,{e.},{y|}>=i=21<5iA>d<x,{e|},{y.}>, (36)

PHYSICAL REVIEW E69, 011108 (2004

We proceed exactly in the same manner for the attach-

ment processes of the myosin heads. We have instead of Eq.
(30),

d(A M
S0 S, 5, 0] [ Acctan
XPX, ri({e}) {yi},dx{dy;}
M
-3 o] [ Avtabivn
P(Xa{fl}v{yl}vt)dx{dyl}}- (39
We define
(A a(x{ et {yi}) = 6c AKX, Ti({e}) {ni})
_A(X!{6|}1{y|})]! (40)

which is the jump ofA when the myosin head na.gets
attached to the actin and we define

M
<5A>a<x,{e|},{y|}>:§1(@A)a(x.{el},{y.}x (41)

which is a symmetric quantity. Then, the analog of E)
for the attachment process is

d—?(n,t)) =kol (M—n+1)(A)(n—1t)—(M—n)(A)

X(n,)+{(5A))(n—11)]. (42

D. Generating functions

We define the generating function as usual,

(A s D=(s"A)= 2, S (A)(n,D).

Again (d(A)/dt)(s,t) is the sum of four contributions,

M

d(A)dt(s,t),= 2 s( oA t)) :

which is the a symmetric state function. Then, expression oo the index stands fora,d,F, andD.

(34) is exactly
Kor((OA))g(n+11). (37

If we collect the contribution of Eq431), (33), and(37),
we obtain

( (A >(nt)) — Kol (N+1)(A)(N+11)—n(A)(n,t)

+H((A)g)(n+1)]. (38)

011108-6
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We also denote d(x)
o] o

N

P(s,t)=ngo s"P(n,t). (45) <o that

D

(%) 9(X) %)

Using EQ.(23), one obtains —(s t)) Koy(1— s) +k105(1 s)—

P(s,t)=[1-p(t)(1—s)™. (46) 1
— — + JE—
Remark. Notice that in Eq. (43, the term kaM (1=$)(x) 77A<F>’ (49)
(1/s){(S8A)g)(s,t) is nonsingular becaus§(5A)y)|n-0=0 ) ) )

due to Egs(35) and (36), which shows that iihn=0, then from which we deduce fos=1 the obvious relation
there is nothing to be detached. d(x) 1
3t V=) (50

E. Simplifying assumptions

We shall now make some reasonable approximationsand also by taking the derivation of Eq.(49) ats=1,

which will permit to complete the calculations.

H1. We assume that the myosin head is instantaneously @ 3<X> — (Kt k X e MO (E
equilibrated when it is detached from the actin filamentand  dt s | . (kos+ k10 oy P G
moreover that its equilibrium distribution &y —y*) [recall -
thaty* is the mechanical equilibrium position for the force
fio(y)]. Thus, we neglect the transient equilibrium regime as 1A 0S 1 (52)

well as the fluctuations aroungl’, which is reasonable for
the free evolution of a single myosin head since we shouldvhich will be needed later.
have ny<ma andDy>D,.

H2. We assume that when a detached myosin head be- B. Equation for the force F
comes attached to the actin filament, it is attached at the
valuey=y* of its coordinatey (which is coherent with the
previous hypothesjs

As a consequence of hypothesikl, we will drop the g M 3
terms in 1k, andD,, in Eqgs.(28) and(28), respectively, so (_Jrz S, l_) F=—
that they reduce to X =1 oy

Now, we take forA, the forceF given by Eq.(14). In Eq.
(47), we have to calculate

M
K +X12:1 5Ei'1) .

d<A) In the restricted summation of EG47), 2{ 5. 1=n, S0
t) that Eqgs.(47) and(47) give
ff E 4K 2 5. ) (@ nt)) —— L kP, 62
N |Fol +Kx+ x1 1Y dt ) A 1 )
d(F
—+2 o 13 Adx{dy}, (47 ( < >< t)) (53)

( (A >(nt)) —DAE ff (&x 21 5 1ayl)2 and thus

< (d(F} ) 1 [ aF)
(s,t) K(F)( SO+ x5 (sb)].
X Adx{dy,}. (48) A 54

V. POSITION AND FORCE IN THE ACTIN FILAMENT From hypothesi$i2, we deduce that the variation of the

A. Equation for the position force F during the attachment of the myosin head nis

At first, we take for the quantit@ the position. The po- (6iF)ax{et iel)=—xv* 5%0.
sition does not vary when a myosin head is attached or de-
tached and from Eq$47) and (47), we have Then
< ) 1 M
ar (M) =g Pm, (F)axleatlan=—xy*S 6.0 (59
=1 "

011108-7
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and in Eq.(44) so that from Eqs(35) and (36)
M . M
<(5F)a>(syt)=—xly*2 s"(M—n)P(n,t) (5F)d(x,{e|},{y|})=)(l(y*+ )(E e 1),
n=0 nakor/ \ =1
oP (59
=—x1Y*|MP(s,t)—s—]|. (56)
Js and we obtain
So, Eq.(44) can be rewritten as op X (F)
— * o 1 S
d<F> - 0<F> <(5F)d(S,t)>—X1y SﬂS + 7]Ak01s Js (60)
T(S’t) =Kkyo (1—5)1s I(s,t)—M(F)(s,t)

Using Eq.(43), we obtain using Eq(60),

JP
—le*(SMP(S,t)—SZE(S,t)} . (57) d(F) H(F) x1 (F)
—(s,t)) =(1=-s)kp—(st)+———
) o dt g ds na S
Finally, we calculate the contribution of the detachment
processes given by E¢43) with A=F. During the detach- .
ment process of the myosin head mpthe variation of the +Kowx1 s (62)

force is given by

_ Finally, the equation of evolution of the force is obtained
o F =0 i
(oiF)a(x{a}.{a}) =6 Y using Eqs.(52), (54), (57), and (61).

because when the myosin head nowhich is attached and

has an internal coordinatg, gets detached, there is a drop @(s )=(1—9)| kot kyos+ E)@
of the total force— (— x1Y;). This formula leads to an exact, at oLt nal IS
but untractable hierarchy of equations. Instead, we reason as K
follows. _ | _ | kM (1 -8) [(F) +xty*
When the myosin head no.gets detached at a certain A
random timeT, the variation of the force ig1y;(T), where a(P) a(P)
y;(T) is the position of the internal coordinageof the myo- x[k01—+ kyos°——— —koMsP| (62)
sin head noi at time T. But, we have Js as

T dy, which leads, fors=1, to the equation fofF)(t) [see Eq.
yi(T)=y*+ L, g dt (A5)].
By taking the derivative with respect ®for s=1, we
whereT’ is the random time of the previous attachment ofobtain also an equation faKF)/Js|s_;, namely,
this myosin head na, so that

d [ (F) K+ x1| F)
Prof T—T'>t)=e kot, —(— >=_<k01+k10+— e
dt| ds |__ s |,
But during the time intervdl T,T'], the myosin head no. 9
i is always attached to the actin filament, so that +kigM(F)|s=1+ x1Y* s
s
dy; dx 1 d
l: _— +_§ ) IP
dt dt N dt X (k01+k108 )E_klOMSP . (63)
and
1 (T C. Evolution of (x) and (F)
yi(T)=y*+ EL’ Fdt+&(T)—&(T"). Equation(62) easily lead§see Eq.(A5)] to
i imati MKkiox1y* _
We make now a Markovian approximation, namely, we (F(1))= —Z 2 e kg~ (KI7a)Y] (64)
assume thakg, is large, so(T—T')=ko,' is small and we ke K
approximate~ during the time interval T, T'], for the myo- A
sin head noi by the final valueF(T) so that
, with
y-(t)~y*+@F~y*+L (58)
I A 77Ak01, k: k10+ k01, (65)
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which shows that{F), starting from the initial value 0, is K+ x1
always positive because in our conventigh,is negative. It E=k+ o (70)
quickly reaches a maximum value, and then decreases expo- A
nentially to O, Note that the correlation betwedhandx is given by
<F(OO)>201 Mkzk *
10K01X 1Y
(N} () =(N(2)){X(0))~ = ——————>0,

as it could be anticipated. Then the average positiort) nak3€
of the actin can be studied by E@G0). The exact value of
(x(t)) is given by Eq.(A9). It is proved in Appendix A that ~which is proportional taV and to ak3y) ~* because of the

(x(t)) reaches a limit whet— o, value of¢ in Eq. (70), for large 7, andkgy,. Moreover, there
. is clearly a positive correlation betwedrandF given by the
MKiox1y formula of Eq.(68) (recall that(N(t)) decreases exponen-
{x(=2))=x(0)=— kK O (66 tially rapidly for larget).
wherex(0) satisfiegFo| +Kx(0)=0. _ VI. SECOND MOMENTS, WORK, AND EFFICIENCY
Moreover, ift—o, the attached myosin heads create a
total force Wh|ch |S |n average A. Diffusion and friction coefficient

The diffusion coefficienD, is related to the friction co-

|Fol + K(x(=0)). efficient n, by the usual Einstein formula

BecausdF|+ Kx(0)=0, we see that the total force ex- keT
erted by the myosin heads on the actin filament is Dpy=—o, (71
A
Mk *
(D(0))y=— %ﬂ (670  which is the condition of consistency to reach thermal equi-

librium for the actin coordinate, for a given configuration

of the myosin heads, in the high friction limit. Moreover,

is proportional to the total surface of the actin filament, with
étge myosin heads which are attached to it. So it seems rea-
sonable to write

Equation (67) is rather natural, becauddk,y/k is the
average numbefN(«)) of attached myosin heads; y,y*
is the force exerted by an attached myosin head when it h
just attached, and in our Markovian aproximatidg,&0),
the force — y,y* is essentially the force exerted by an at- M
tached myosin head. A=At oD, e 1,
i=1 "

D. lati N NF . - - I .
Correlations (Nx) and (NF where7? is the friction coefficient for the actin filament with

The stochastic theory developed previously is mainly useno attached myosin. Because we are interested only in the
ful for studying the correlations, which cannot be obtainedarge time limit, we replace this expression by
from simple arguments.

In fact, these are the correlations between the position or 0 K1io
the force and the number of attached myosin heads. They are A=At oM K (72)
given by
A(X) B. Second momentg F2) and (xF)
(Nx)=——(s,t)] - , ;
Js s=1 Obtaining the time-dependent expressions of these mo-

ments needs lengthy and intricate calculations which will be
HF) published elsewhere. Their stationary values are given by
<N F> = I(S,t)

s=1

1
—(F?)()=KDp+ *)2k koM (K?7m4), (73
Their values are given by Eq§A16) and (A21) for t=oo, 77A< /) A+ Oy ) KoM/ (K), (79

Mk Korx1y* 1
(NF)(m):——lok;;le , 69) - (XF)() = =D, (74)
21,2 * * C. The cycle for a single myosin head
(Nx)(m)=—M Kiox1y +M@ x(O)—klOkOley , . _

K2K Kk nak2E F|gure 2 represents a full cycle, in terms of free energy,
69) for a single myosin head. The cycle starts when a given
myosin head is attached to the actin filament. According to

with our hypothesi$i2 in Sec. IV E, this takes place at a poit
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with y=y* at a certain timel’. The myosin coordinatg
relaxes along the potential energy cuty&€?, along the arc
AB and gets detached at a certain timeat a positiorny(T).

After that time, an ATP molecule is attached and the freewhered¢ is the white noise force, so that
energy increases by, to point C, above the potential en-

ergy U(® of the detached myosin head. According to our
hypothesisH1, the free myosin head releases instanta-

1
dx= —Fdt+dé¢, (79
7A

1 M
(IFol + Kx)dx=— - F?dt—Fd¢— >, S ayidx.
A i=1 "

neously to is mechanical equilibrium positighi at pointD, (80)
and then, is attached again closing the cycle at painthile
the ATP molecule is hydrolyzed in ADPP; . On the other hand, when the myosin headins.attached
to the actin filamentdy,=dx, so that
D. Work and efficiency y2 y2 1
The work produced by the muscular fiber per unit time is  y;dx=y;dy; =d(7') — E(in)ZZd ?') — E(dx)2

the work of the mesoscopic ford€ |+ Kx, so this is
Let us take the average of E@0) and use the previous

d_W: Fal+Kx d_x 75 relation. We notice that becaudg(t) is independent of the
(|Fol ) (795)
dt dt past,
We obtain (Fd§)=0.
dw\ F 1 v K F Moreover @x)? is (d¢)? independent of the number of
dt =| 0|a< ) ao( )- myosin heads which are attached and so, becé(s&)?)

=2Ddt [see Eq(7)],
If tis large, the first term in the right-hand side tends to 0,

M
d th is gi b 4), 1
and the average power fs given by &4 <<|Fo|+kx>dx>=—,7—<F2>dt—<E 3 1d(u<1><yi>>>
A i=1 "

dw
5t~ —KD. (76) + x1DA(N(1))dt. (81)

This residual power is consumed by the fiber although its -t US examine the behavior of this expression for large
macroscopic motion has stopped. It is due to the diffusion 1he last termDx(N(t))dt is of orderO(1) with respect
effects. to M and so it is negligible compared to the first term

2 . .

Now, in the stationary state, the energy which is put in the~ (1/74)(F*)dt which is of orderO(M) [see Eq.(73)].
system per unit time, is the energy of an ATP bond mul- Moreolver, for a single at_tached myosin head,_ the variation
tiplied by the number of ATP bonds which are destroyed per_dU,( (y) of the potential energy during a time interval
unit time, which is also the number of detachment processdsl» '] between an instari’ of attachment and the follow-

per unit time, so the energy fueled in the system per unitd instant of detachmert, is surely less then the valug
time, due to the ATP molecules is of an ATP bond energy. This is explained in Sec. VI C and

shown in Fig. 2. As a consequence, one has

dE
<E> = €o{N) (D Koy (77) —(dU®(y))) < eokoudt

and
dw
dt

R=-——". (79)

(&

The efficiency is

M
- < ;1 5eiyldu(l)(y0)> = EO<N(OO)>kOldtv

so that from Eqs(81) and(77),
<d_VV> B < (|Fq| +kx)dx>

This efficiency is smaller than 1, as it should be, but this dt dt
is not so obvious. To show this, we rewrite the expression for Ky ok 1
dW/dt in the following way. We start from E(75) and use <eoM 1k ot 77_<F2>+O(1)
A
. dE
[Fol+Kx==F=2 8. 1. s<—>
i=1 ! dt
But by Eq.(6), This proves thaR=<1.
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VII. CONCLUSION with

In this paper, we have defined a detailed microscopic k=K.t K (A3)
model for the conversion of chemical energy into transla- 107701
tional mechanical energy for the contraction of a muscle. We
have taken into account the fact that the actin filament
(which is set in motiojp is coupled to a large number of JP
independent myosin molecules, and we have treated each (k,,+k;gs? ) —k10M3p=M[1—p(1—5)]M—1
individual myosin molecule using its own internal degree of
;reedom Thl§ led us to a syste_m of Fokker_ Planck equations X [kogp+KigS(p—1)].
or the evolution of the probability distributions of the con-
figuration of the system actin-myosin molecules. Using a (A4)
kind of Markovian approximation which was justified in Sec. Ct
V, we have been able to avoid an infinite hierarchy and to For s=1, this reduces to-Mk;,e™“, and Eq.(62) be-
solve for the time evolution of the average and correlation ofomes fors=1,
the three main physical quantities for the system, namely, the
total number of attached myosin heads, the coordinate of the d(F)(t) _ ﬁ EV(t) — Mk * ~—kt A5
center of mass, and the total force on the actin filament. In dt (F)®) 10X1y"€ (AS5)
fact, we have introduced a reduced “coarse grained” descrip-
tion of the system. In particular, we have considered the This equation must be solved with the initial value
work and the efficiency in the transient regime as well as iF)(0)=0. Indeed at timet=0, when the muscle is
the stationary state. stretched by the external force|F,|, it goes to an equilib-

The expressions for the work and the efficiency can beium positionx(0) such that
considered as the main results of this microscopic model. In
fact, their calculations need the second moments and corre- —|Fo| —Kx(0)=0 (AB)
lations of the stochastic variables. These correlations cannot
be obtained from a “mean field” model of muscular contrac- and no myosin is attached, so there is no force exerted by the
tion when only one effective myosin head is consideredmyosin and F(0)=0. The solution of Eq.(A5) with
(whereas the mean values of the variable can be estimated {f(0))=0 is
this way). On the other hand, the efficiency of muscular con-

Then we need in Eq62)

traction is an important quantity in practice, and our theoret- Kiox1y™* -

ical results should be compared to experimental observa- <F(t)>——K (e K—e (K], (AT)
tions. This necessary comparison should use the explicit k——

expression oR obtained from Eq(78) after lengthy calcu- 71A

lations which will be given in a further publication. It in-
cludes many parameters with clear physicochemical meal
ing, but which may be difficult to measure individually. It
can be expected that further progress in this direction wil
result from close collaboration with biologists.

ryvh|ch is always positive, sincg* <O0.
Recall here that we are in the large friction limit, so the
|dom|nant term for large is

Mk *
(F(t)y~— 2otk (A8)
ACKNOWLEDGMENTS K— —
B.S. thanks M. Mackey, S. R. Caplan, A.-M. Lauzon, and A
M. Magnasco for profitable discussions. Then Eq.(50) for (x(t)) can be solved immediately using

Eq. (A7) and the initial conditiorx(0) is given by Eq(A6),
APPENDIX A: SOLUTIONS OF THE EQUATIONS FOR F

AND x
(x(1))=x(0)+ ﬂ ( e (Kimat_1)
i -K | K
1. Calculation of (x) and (F) K7a
Using EQq.(46), we obtain 1
g Eq.(46) B E(e,kt_ 1)} (A9)
P
—5| =MpO=(N()). (A1)
Sls=1 for t— +, so we see that
We assume that at tinte=0, no myosin head is attached, MKiox1y™*
so thatp(0)=0 and by Eq(25), (X(2))=x(0) = — - (A10)
p(t)= @(l_efkt)’ (A2) _ We recall thaty* is _negative according to our conven-
k tions, so clearlyx(e)) is larger tharx(0) as it should be.
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2. Alemma

Before continuing the calculations, we need a simple

lemma. Consider a differential equation

du

afz-—au+g,

u(0)=0, (Al11)

where « is a positive constant angi(t) is a function such
that for larget

9()=g.+0(e” ) (y>0). (A12)
Then the solutioru(t) of Eq. (A1l) satisfies
_ 9 -t ’
u(t)=;+0(e Y (y'>0). (A13)

Indeed we define

u(t)=v(t)e ,
so thatv satisfies

dv

g 9we” ot
and

t
u(t)=e‘“‘fog(5)e“5ds,

from which the result of Eq(A13) follows.

3. Calculation of @(F )/ ds|s-, for large t
d{F)ds|s—, satisfies Eq(63) which is of the type(All).

At time t=0 it is obviously 0. We study the asymptotic

behavior of the inhomogeneous terms in E8R). First, we
know that(F)|s_, decreases exponentiallgee Eq.(A8)].
Then, using Eq(A4), we can compute

Js

P
( (Koa+ Kyg8?)—= —kigMsP
B Js
s=1
=M(M—1)p[kp—Kio]+Mkyo(p—1)
= —M?pkye ¥'—MKgp?.

So for t—oo, this is —Mkfokol/k2 and the asymptotic
behavior of the inhomogeneous term of EGJ) is

MKS ko1
0. =~ 5y (AL4)
Define
K+
f=kt = AX L (A15)
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Then using Eq(A13), we obtain

HE)| - MKikowray*

- (A16)
95 Jso k2¢

4. Calculation of @*(F )/ @s?|—, for large t

For further use, we need to calculate this limit. First we
derive an equation for this quantity by taking the second
derivative ins for Eqg. (62) and then takes=1,

d [ 9%(F) 2] x1|(F)
a( (952 1) —_— _Zg k01+ klos+ a)?
K %(F)

I

+2k M—lw:>
1M
s=1

P2
+x1y* —
9s?

- klOM S P)

2y, +K\ oA F
:—(2k+X1—) )
A 9s?

s=1 s=1

az

a(F)
+xay* —
X1y P

+ 2Ky M~ 1) — =

s=1 s=1

X

JP 207P
I(01 S <108 IS I(1OI"|SI .
(' \1‘)

This equation(A17) is of the same type as EGAL11), with

K
a=2(——

. (A18)
A

We need the asymptotic behavior of the inhomogeneous
term in Eq.(A17). Using Eq.(A4), we have

32 , 0P
P (koitKyes )g —kioMsP

s=1

2
=M|— [1_p(1_5)]M_1)(kp_klO)
s=1
+2M| — [1—p(1—s)]""‘1)k10(p—1).
s|_,

But kp— ko= — ke k' is exponentially small so that the
asymptotic behavior is
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kidkor

—2M(M—1) o

Thus, using this expression and E416), the asymptotic
behavior for large of the inhomogeneous term of EGA17)
is

k2 k
g.=—2M(M—1) 1°k°1xly*(—l°+1 . (A19)
k? &
and from Eq.(A13), we have
&*(F k2 .k * [k
( <2> L 2M(M—1) 10€01X1Y <%)+1)_
s s=1 k2( 2§_ -
1A
(A20)

5. Calculation of @{x)/ds|s-, for large t

This quantity is given by Eq(51). The inhomogeneous
terms of this equation are

PHYSICAL REVIEW B9, 011108 (2004

L AR

kM (x)(t) PN

s=1

which has the asymptotic behavifusing Egs.(A10) and
(A16)],

MKyox1y* M kioka 1y*
9x =kyoM| X(0) = —— = ~ 5
nakE
or
o= — MZKEox1y* +Mkag x(0)— KioKorx1Y™
: kK w0 77Ak2§ ’
so that, using Eq(A13) with a=K,
X MZkigxy* kK kaoKorx1y*
(x) _ 120X1y +M%) X(0)— 10 01);13’
98 lgo1 kK nakeé

(A21)
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