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Microscopic model of the actin-myosin interaction in muscular contractions
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We define and study a detailed many body model for the muscular contraction taking into account the
various myosin heads. The state of the system is defined by the position of the actin and by an internal
coordinate of rotation for each myosin head. We write a system of Fokker-Planck equations and calculate the
average for the position, the number of attached myosin heads, and the total force exerted on the actin. We also
study the correlation between these quantities, in particular between the number of attached myosin heads and
the force on the actin.
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I. INTRODUCTION

Muscular cells have the ability to convert chemical e
ergy, stored in ATP bonds, into mechanical energy. The
scription of this mechanism has been known for a long ti
and is described in many text books~such as Refs.@1–4#!. It
involves a passive protein, called actin, which can contr
the cell when it is dragged by other proteins, called myos
Each myosin molecule is articulated into two parts: one p
is fixed, the other part is a kind of head which can rot
around the fixed part. For a cell at rest~no neural excitation!,
the myosin head cannot reach and attach to the actin, du
the presence of another protein called troponine. Whe
neural excitation occurs, for example, if the muscle
loaded, this results in an inhibition of the troponine mo
ecule, and the myosin heads, equipped with an ADP m
ecule, can attach to the actin, lose the ADP molecule,
relaxes towards a new equilibrium position~with respect to
the fixed part of the myosin!, thus dragging the actin mol
ecule. This process is stopped by a random arrival of an A
molecule on the attached myosin head, resulting in the
tachment of the head, and the hydrolysis of ATP into AD
and phosphate~this hydrolysis is catalyzed by the myos
head!. During the whole cycle, an ATP molecule is consum
(nG.30 kJ/mol), and the actin molecule is dragged ov
around 10 nm. The first model was proposed by Hill~Refs.
@5–7# for the original reference, and Ref.@8# for a general
discussion of energy transduction in biology!. The general
idea of this model, which is the basis of all subsequent m
els, is that a given myosin head fluctuates between two
energy states with different potential energy curves, one
responding to the attached state, the other one to the
tached state. This idea was also used in more recent w
~see Ref.@9# for a general review on molecular motors
well as Refs.@10–18#!.

A rough estimation shows that the number of myo
heads which can attach to an actin filament is of the orde
one thousand. In a way, the situation is similar to the one
an engine with many cylinders, the role of a cylinder bei
taken by the role of a myosin head, except that there
much more myosin heads than cylinders, and that the my
heads can attach or detach independently, whereas us
1063-651X/2004/69~1!/011108~13!/$22.50 69 0111
-
e-
e

ct
.

rt
e

to
a

l-
d

P
e-

r

-
e
r-
e-
ks

of
f

re
in
lly

engineers arrange the cylinders in an engine in such a
that they work cooperatively.

We think that this cooperative behavior is very importa
for natural molecular motors, and that it is one of the ma
differences with respect to man-made engines. However,
feature of molecular motors is not taken into account co
pletely in many papers on the subject, when the musc
contraction is modeled by the motion of a single effecti
myosin head. In fact, usual models of muscular contracti
only involve the motion of a single myosin head: this was t
original model of Hill. Others models are derived as a me
field approximation from a many body theory~see, for ex-
ample, Ref.@10#!.

Our model takes into account explicitly the many bo
nature of the problem, namely, the fact that myosin heads
be attached or detached at random, which generates fluc
tions and correlations which are not usually taken into
count by other models.

Each myosin head involved in the muscular contraction
described by an internal coordinate, which takes continu
value. Moreover, the actin heads undergo chemical tra
tions between the attached and the detached configurat
at certain rates. We assume that the system is in the regim
high friction, and we write a Fokker-Planck system of equ
tions for the evolution of the probability distribution of th
configuration system actin1 myosin heads~see Sec. II!. We
study the evolution of symmetric observables~Secs. III and
IV !, and specialize to the average value and correlation
the natural observables of the system, namely, the numbe
attached myosin heads, the center-of-mass coordinate o
system, and the total force acting on actin. We can solve
evolution of these quantities provided that a natural Mark
ian approximation is made~see Sec. V!. Finally, we calculate
the work ~Sec. VI! for large time. An appendix provides th
details of the calculations.

In another paper@19#, we shall treat a self-consistent bu
less detailed model, representing the cycle by transition p
cesses taking into account the chemical reactions.

II. A FOKKER-PLANCK SYSTEM FOR THE MYOSIN-
ACTIN INTERACTION

We refer to Refs.@1,3# for the general biochemical de
scription of the motion of the actin and myosin, as well as
©2004 The American Physical Society08-1
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the terminology and notations.
We represent the actin filament by a moving massive

and we denote byx the abscissa of its center of mass referr
to a fixed origin. The various myosin arms which can atta
to the actin filament are numbered byi 51, . . . ,n. These
arms spring out of a certain line, parallel to the actin. Wh
the myosin head is attached to the actin, its equilibrium an
with the myosin filament isu0: recent observations show th
u1.p/6, corresponding to a pointOi on the myosin line
@20#. The actual position of the myosin head is measured
an abscissayi with respect toOi . When the myosin head i
not attached, the equilibrium angle of the arm is aboutu0,
with u0.p/2 ~Ref. @1#!, corresponding to a valuey* of yi
~see Fig. 1!. The myosin head is submitted to the potent
Ui

(0)(yi) if it is not attached, and to the potentialUi
(1)(yi) if

it is attached. Following Hill~see Refs.@5,8#!, we assume
that these potentials are approximately harmonic and wr

Ui
(1)~yi !5

x1

2
yi

2 ,

Ui
(0)~yi !5

x0

2
~yi2y* !21U0 . ~1!

These potentials are approximatively represented in
2, showing the various levels of energy.

The state of the entire system actin1 myosin heads is
specified by the following data.

~a! The abscissax of the center of mass of the actin.
~b! The abscissayi of each myosin head.
~c! A Boolean variablee i50 or 1, which indicates if the

myosin head no.i is unattached (e i50) or attached (e i
51). In the usual Langevin description, the equations
motions are of the following type.

~1! If the myosin head no.i is not attached, we take a hig
friction limit and

dyi5
1

hM
f i

(0)~yi !dt1dj i~ t !, ~2!

where

FIG. 1. Interaction between the myosin heads and the actin
ment.
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f i
(0)52

]Ui
(0)~yi !

]yi
52x0~yi2y* !. ~3!

hM is the viscosity of the motion of the free myosin head a
j i(t) is a white noise force with

^dj i~ t !&50,̂ dj i~ t !dj j~s!&52DMd i j d~ t2s!dtds, ~4!

where DM is a difusion coefficient related tohM by the
Einstein relation

1

hM
5

DM

kBT
.

@d i j is the Kronecker symbol andd(t2s) is the Dirac func-
tion.#

~2! If the myosin head no.i is attached, then

dyi

dt
5

dx

dt
. ~5!

~3! Finally, x is submitted to the following.
~i! The force exerted by the attached myosin heads,

f i
(1)~yi !52

]Ui
(1)~yi !

]yi
52x1yi if e i51.

~ii ! The external forceFe(x), which includes the externa
loading force2uF0u and a springlike force2Kx exerted by
the wall of the sarcomer,

Fe~x!52uF0u2Kx.

~iii ! A white noise forcedj,

dx5
1

hA
S Fe1(

i 51

M

de i1
f i

(1)~yi !D dt1dj~ t !, ~6!

a-

FIG. 2. The cycle for a single myosin head.
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^dj~ t !&50, ^dj~ t !dj~s!&52DAd~ t2s!dtds,

1

hA
5

DA

kBT
. ~7!

The probability distribution for the state of the system
P(t,x,$e i%,$yi%) at time t. We shall also assume that th
myosin head can attach to the actin filament with r
k10(yi),

e i50→
k10

e i51, ~8!

or detach from the actin filament with ratek01(yi),

e i51→
k01

e i50. ~9!
q
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We denote byt i the transformation of thee variables
which changes the value ofe i only.

t i~$ek%!5$ek8%,

ek85ek for kÞ i ,

e i85e ī , ~10!

wheree ī512e i .
Sot i is the operation of attachment~or of detachment! of

the myosin head no.i.
One can write a Fokker-Planck equation for the proba

ity distribution P(x,$e i%,$yi%,t) using the equations of mo
tion, Eqs.~2!, ~5!, and~6!. One has
]P~x,$e i%,$yi%,t !

]t
5(

i 51

M

de i ,0
$k01~yi !P~x,t i$ek%,$yk%,t !2k10~yi !P~x,$ek%,$yk%,t !%1(

i 51

M

de i ,1
$k10~yi !P~x,t i$ek%,$yk%,t !

2k01~yi !P~x,$ek%,$yk%,t !%1(
i 51

M

de i ,0

]

]yi
S 2

1

hM
f i

(0)~yi !PD1S ]

]x
1(

i 51

M

de i ,1

]

]yi
D

3F2
1

hA
S F~x!1(

i 51

M

de i ,1
f i

(1)~yi !D PG1(
i 51

M

de i ,0
DM

]2

]yi
2

P1DAS ]

]x
1(

i 51

M

de i ,1

]

]yi
D 2

P. ~11!
ni-
n
com-
nt
y-

in

r-
Let us comment briefly on the origin of each term in E
~11!. In the right-hand side, the first sum is the contributi
to P(x,$e i%,$yi%,t) of the detachment process of a myos
head. Namely, the myosin head no.i is in an attached stat
e i51, and gets detached with probabilityk01(yi)dt during
the time intervaldt. The second sum is the correspondi
term for the attachment process. The third sum is the con
bution of the current of probability of the motion of una
tached myosin heads. It comes from the te
(1/hM) f i

0(yi)dt of the equation of motion, Eq.~2!. The
fourth term is the contribution to the current of probability
the motions of the center of mass~coordinatex) of the actin
filament together with the motion of the myosin heads wh
are rigidly attached to the actin filament. It comes from t
term (1/hA)@Fe1( i 51

M de i1
f i

(1)(yi)#dt of Eqs. ~5! and ~6!.
The last two sums are the diffusion currents coming from
white noise forces, either on the free myosin heads or on
center of mass of the actin filament, together with the rigi
attached myosin heads.

We shall assume that the constantsk01(yi) and k10(y)
are independent ofy. We can justify this hypothesis
in the following manner. First the ratiok01/k10 is
exp„2(1/kBT)@U (0)(y)2U (1)(y)#…. But U (0)(y)2U (1)(y)
is of the orderDG of the bond energy of ATP, so thatk01/k10
is extremely small at normal temperature (DG
;30 kJ/mole) and the variation ofk01/k10 with y is also
extremely small. Thus we can assume thatk01/k10 is con-
stant.
.

ri-

h
e

e
e

y

Moreover, there is almost no information on the mag
tude of k10 and k01 in the literature for the obvious reaso
that the attachment and detachment processes are very
plex chemical reactionsin vivo. So we take them as consta
parameters. In fact, we will introduce later a Markovian h
pothesis which is a much stronger hypothesis.

We define the probabilityP($e l%,t) that the myosin heads
are in states$e l% at time t. This probability is the integral
over x and yl of the full probability P(x,$e i%,$yi%,t) and
satisfies an equation obtained by integration of Eq.~11! over
all the spatial variables,

]P~$e l%,t !

]t
5(

i 51

M

de i ,0
@k01P„t i~$e l%!,t…2k10P~$e l%,t !#

1(
i 51

M

de i ,1
@k10P„t i~$e l%!,t…2k01P~$e l%,t !#.

~12!

Let us denote byN the total number of attached myos
heads, so thatN is the random variable given by

N5(
i 51

M

e i . ~13!

We shall denote byF the total force exerted on the cente
of-mass coordinatex of the actin filament,
8-3
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F52uF0u2Kx2x1(
i 51

M

de i ,1
yi , ~14!

and we denote byF the force exerted by the attached myos
heads on the actin filament,

F52x1(
i 51

M

de i ,i yi . ~15!

The quantitiesF andF are random variables.

III. SYMMETRY WITH RESPECT TO THE MYOSIN
HEADS

We shall assume in the sequel that the probability dis
butionsP(x,$e l%,$yl%,0) at timet50 is symmetric with re-
spect to any permutation of the myosin heads, i.e., it is
changed by any permutation operation,

$e l ,yl%→$es( l ) ,ys( l )%, ~S!

wheres is a permutation of$1, . . . ,M %.
It is clear that this property remains valid for allt because

the operator in the second member of the evolution eq
tions, Eq.~11!, is also symmetric with respect to the perm
tation S.

Let A(x,$e l%,$yl%) be an observable of the system whi
is symmetric with respect to the operations of permutationS.
We denote bŷ A&(t) its average value with respect to th
probability P, namely,

^A&~ t !5(
$e l %

E E A~x,$e l%,$yl%!P~x,$e l%,$yl%,t !dx$dyl%,

~16!

where we integrate over all the space variablesx,yl . We also
denote bŷ A&(n,y) the average value ofA, restricted on the
configuration$e l% such that

N[(
l 51

M

e l5n

for a givenn, namely,

^A&~n,t !

5 (
N5n

E E A~x,$e l%,$yl%!P~x,$e l%,$yl%,t !dx$dyl%,

~17!

so that obviously

^A&~ t !5 (
n51

M

^A&~n,t !. ~18!

Note that^A&(n,t) is not a conditional expectation. It i
only a restricted average over configurations withN5n.

Now it is clear that under the symmetry assumptions foA
andP, all the quantities in Eq.~17!,
01110
i-

-

a-

E E A~x,$e l%,$yl%!P~x,$e l%,$yl%,t !dx$dyl%,

are equal, so that the common value is

E E A~x,$e l%,$yl%!P~x,$e l%,$yl%,t !dx$dyl%

5
n! ~M2n!!

M !
^A&~n,t !, ~19!

given that

(
l 51

M

e l5n.

As a particular case, let us consider the probabilityP(n,t)
that there aren myosin heads attached to the actin filame
so that we take forA the characteristic functionx$N5n% . We
have, using notations of Sec. II,

P~n,t !5 (
N5n

P~$e l%,t !, ~20!

and all theP($e l%,t) are equal whenN5n, so that Eq.~19!
becomes

P~$e l%,t !5
n! ~M2n!!

M !
P~n,t !. ~21!

From Eq.~12!, we can obtain a differential equation fo
P(n,t). We sum Eq.~12! for all configurations$e l% such that
(e l5n. Then, using Eq.~21!,

]P~n,t !

]t
5k01~n11!P~n11,t !1k10~M2n11!P~n21,t !

2@k10~M2n!1k01n#P~n,t !. ~22!

This equation can be obtained directly, thanks to the
pothesis thatk01 and k10 are independent of$yi%. It is well
known that it can be solved exactly if we assume that at
50, P(n,0) is a binomial distribution.P(n,t) remains bino-
mial at all t with averagep(t),

P~n,t !5
M !

n! ~M2n!!
@12p~ t !#M2np~ t !n, ~23!

with the averagep(t),

p~ t ![
^N&~ t !

M
5

1

M (
n50

M

nP~n,t !, ~24!

given explicitly by

p~ t !5p~0!e2(k101k01)t1
k10

k101k01
~12e2(k101k01)t!.

~25!
8-4
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IV. THE EVOLUTION OF AN OBSERVABLE

A. Decomposition of the variation

We rewrite Eq.~11! with slight rearrangements in the two summations,

]P~x,$e l%,$yl%,t !

]t
5k01F(

i 51

M

de i ,0
P@x,t i~$e l%!,$yl%,t#2(

i 51

M

de i ,1
P~x,$e l%,$yl%,t !G1k10F(

i 51

M

de i ,1
P~x,t i$e l%,$yl%,t !

2(
i 51

M

de i ,0
P~x,t i$e l%,$yl%,t !G1

1

hA
S ]

]x
1(

i 51

M

de i ,1

]

]yi
D F S uF0u1Kx1(

i 51

M

de i ,1
x1yi D PG

2
1

hM
S (

i 51

M

de i ,0

]

]yi
@ f i

(0)~yi !P# D 1DAS ]

]x
1(

i 51

M

de i ,1

]

]yi
D 2

P1DMS (
i 51

M

de i ,0

]2

]yi
2D P. ~26!
n
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-
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Let A(x,$e l%,$yl%) be a quantity which is symmetric with
respect to the permutationS of the myosin heads. We ca
obtain the derivative (d^A&/dt)(n,t) of ^A&(n,t) using Eq.
~26!. We multiply Eq. ~26! by A(x,$e l%,$yl%,t), integrate
over the spatial variables, and sum over configurations$e l%
with N5n. We obtain four contributions,

d^A&
dt

~n,t !5S d^A&
dt D

d

1S d^A&
dt D

a

1S d^A&
dt D

F

1S d^A&
dt D

D

,

~27!

corresponding to the four types of contributions to the rig
hand side of Eq.~26!, namely,~i! the contributions of detach
ment processes~proportional tok01), ~ii ! the contributions of
attachment processes~proportional tok10), ~iii ! the contribu-
tions of friction processes~proportional to 1/hA and 1/hM),
and ~iv! the contributions of diffusion processes~propor-
tional to DA andDM).

These different contributions are studied below.

B. Friction and diffusion processes

The contributions of these processes tod^A&/dt are ob-
tained by multiplying the corresponding terms in the rig
hand side of Eq.~26! by A(x,$e l%,$yl%), integrating over the
spatial variables, and summing over configurations$e l% with
(e l5n. After integration by parts, we obtain

S d^A&
dt

~n,t ! D
F

52
1

hA
(
N5n

E E S uF0u1Kx1x1(
i 51

M

de i ,1
yi D

3PS ]

]x
1(

i 51

M

de i ,1

]

]yi
DAdx$dyl%

1
1

hM
(
N5n

E E (
i 51

M

de i ,0
f i

(0)~yi !PS ]

]yi
ADdx$dyl%

~28!
01110
-

-

S d^A&
dt

~n,t ! D
D

5DA (
N5n

E E PS ]

]x
1(

i 51

M

de i ,1

]

]yi
D 2

Adx$dyl%

1DM (
N5n

E E PS (
i 51

M

de i ,0

]2

]yi
2D Adx$dyl%.

~29!

C. Attachment and detachment processes

At an instant of attachment or of detachment, the quan
A varies discontinuously. Let us consider the detachm
process, given by the terms proportional tok01 in Eq. ~26!.
We have

S d^A&
dt

~n,t ! D
d

5k01(
N5n

F(
i 51

M

de i ,0E E A~x,$e l%,$yl%!

3P„x,t i~$e l%!,$yl%,t…dx$dyl%

2(
i 51

M

de i ,1E E A~x,$e l%,$yl%!

3P~x,$e l%,$yl%,t !dx$dyl%G . ~30!

Using Eq.~19!, the last sum in the square bracket reduc
to

2S (
i 51

M

de i ,1D n! ~M2n!!

M !
^A&~n,t !

52n
n! ~M2n!!

M !
^A&~n,t !,

and the sum over the configurations with(e i5n gives a
contribution
8-5
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2k01n^A&~n,t !. ~31!

We rewrite the square bracket in the first sum of Eq.~30!
as

(
i 51

M

de i ,0E E A~x,t i$e l%,$yl%!P„x,t i~$e l%!,$yl%,t…dx$dyl%

1(
i 51

M

de i ,0E E @A~x,$e l%,$yl%!2A~x,t i$e l%,$yl%!#

3P„x,t i~$e l%!,$yl%,t…dx$dyl%. ~32!

In Eq. ~32!, let us consider the first summation. It is

S (
i 51

M

de i ,0D ~n11!! ~M2n21!!

M !
^A&~n11,t !,

with ( i 51
M de i ,0

5M2n. We sum this quantity over all con

figurations with(e i5n, so that this term gives a contribu
tion to Eq.~30!, which is

~n11!k01̂ A&~n11,t !. ~33!

In Eq. ~32!, we can calculate the contribution to Eq.~30!
of the second summation as follows. It is

k01 (
N5n11

(
i 51

M

de i ,1E E A~x,t i$e l%,$yl%!

2A~x,$e l%,$yl%!P~x,$e l%,$yl%,t !dx$dyl%. ~34!

Indeed, in the sum over configurations$e l%, we can use
$e l% in P, provided that(e i5n11.

Let us define

~d iA!d~x,$e l%,$yl%!5de i ,1
@A~x,t i$e l%,$yl%!

2A~x,$e l%,$yl%!#, ~35!

which is the jump ofA when the myosin head no.i gets
detached, and

~dA!d~x,$e l%,$yl%!5(
i 51

M

~d iA!d~x,$e l%,$yl%!, ~36!

which is the a symmetric state function. Then, express
~34! is exactly

k01̂ ~dA!&d~n11,t !. ~37!

If we collect the contribution of Eqs.~31!, ~33!, and~37!,
we obtain

S d^A&
dt

~n,t ! D
d

5k01@~n11!^A&~n11,t !2n^A&~n,t !

1^~dA!d&~n11,t !#. ~38!
01110
n

We proceed exactly in the same manner for the atta
ment processes of the myosin heads. We have instead o
~30!,

S d^A&
dt

~n,t ! D
a

5k10(
N5n

F(
i 51

M

de i ,1E E A~x,$e l%,$yl%!

3P„x,t i~$e l%!,$yl%,t…dx$dyl%

2(
i 51

M

de i ,0E E A~x,$e l%,$yl%!

3P~x,$e l%,$yl%,t !dx$dyl%G . ~39!

We define

~d iA!a~x,$e l%,$yl%!5de i ,0
@A„x,t i~$e l%!,$yl%…

2A~x,$e l%,$yl%!#, ~40!

which is the jump ofA when the myosin head no.i gets
attached to the actin and we define

~dA!a~x,$e l%,$yl%!5(
i 51

M

~d iA!a~x,$e l%,$yl%!, ~41!

which is a symmetric quantity. Then, the analog of Eq.~40!
for the attachment process is

S d^A&
dt

~n,t ! D
a

5k01@~M2n11!^A&~n21,t !2~M2n!^A&

3~n,t !1^~dA!a&~n21,t !#. ~42!

D. Generating functions

We define the generating function as usual,

^A&~s,t !5^sNA&5 (
n50

M

sn^A&~n,t !.

Again (d^A&/dt)(s,t) is the sum of four contributions,

d^A&dt~s,t !p5 (
n50

M

snS d^A&
dt

~n,t ! D
p

,

where the indexp stands fora,d,F, andD.
Using Eqs.~38! and ~42!, we obtain

d^A&
dt

~s,t !d5k01F ~12s!
]^A&
]s

~s,t !1
1

s
^~dA!d&~s,t !G ,

~43!

d^A&
dt

~s,t !a5k10Fs~12s!
]^A&
]s

~s,t !2M ~12s!^A&~s,t !

1s^~dA!a&~s,t !G . ~44!
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We also denote

P~s,t !5 (
n50

N

snP~n,t !. ~45!

Using Eq.~23!, one obtains

P~s,t !5@12p~ t !~12s!#M. ~46!

Remark. Notice that in Eq. ~43!, the term
(1/s)^(dA)d&(s,t) is nonsingular becausê(dA)d&un5050
due to Eqs.~35! and ~36!, which shows that ifn50, then
there is nothing to be detached.

E. Simplifying assumptions

We shall now make some reasonable approximatio
which will permit to complete the calculations.

H1. We assume that the myosin head is instantaneo
equilibrated when it is detached from the actin filament a
moreover that its equilibrium distribution isd(y2y* ) @recall
that y* is the mechanical equilibrium position for the forc
f i

0(y)]. Thus, we neglect the transient equilibrium regime
well as the fluctuations aroundy* , which is reasonable fo
the free evolution of a single myosin head since we sho
havehM!hA andDM@DA .

H2. We assume that when a detached myosin head
comes attached to the actin filament, it is attached at
valuey5y* of its coordinatey ~which is coherent with the
previous hypothesis!.

As a consequence of hypothesisH1, we will drop the
terms in 1/hM andDM in Eqs.~28! and~28!, respectively, so
that they reduce to

S d^A&
dt

~n,t ! D
F

52
1

hA
(
N5n

E E S uF0u1Kx1x1(
i 51

M

de i ,1
yi D

3PS ]

]x
1(

i 51

M

de i ,1

]

]yi
DAdx$dyl%, ~47!

S d^A&
dt

~n,t ! D
D

5DA (
N5n

E E PS ]

]x
1(

i 51

M

de i ,1

]

]yi
D 2

3Adx$dyl%. ~48!

V. POSITION AND FORCE IN THE ACTIN FILAMENT

A. Equation for the position

At first, we take for the quantityA the position. The po-
sition does not vary when a myosin head is attached or
tached and from Eqs.~47! and ~47!, we have

S d^x&
dt

~n,t ! D
F

5
1

hA
^F&~n,t !,
01110
s,

ly
d

s

ld

e-
e

e-

S d^x&
dt

~n,t ! D
D

50,

so that

S ]^x&
]t

~s,t ! D5k01~12s!
]^x&
]s

1k10s~12s!
]^x&
]s

2k10M ~12s!^x&1
1

hA
^F&, ~49!

from which we deduce fors51 the obvious relation

d^x&
dt

~ t !5
1

hA
^F&~ t ! ~50!

and also by taking thes derivation of Eq.~49! at s51,

d

dt

]^x&
]s U

s51

52~k011k10!
]^x&
]s U

s51

1k10M ^x&~ t !

1
1

hA

]

]s
^F&U

s51

~51!

which will be needed later.

B. Equation for the force F

Now, we take forA, the forceF given by Eq.~14!. In Eq.
~47!, we have to calculate

S ]

]x
1(

i 51

M

de i ,1

]

]yi
DF52S K1x1(

i 51

M

de i ,1D .

In the restricted summation of Eq.~47!, ( i 51
n de i ,1

5n, so
that Eqs.~47! and ~47! give

S d^F&
dt

~n,t ! D
F

52
1

hA
~K1x1n!^F&~n,t !, ~52!

S d^F&
dt

~n,t ! D
D

50, ~53!

and thus

S d^F&
dt

~s,t ! D
F

52
1

hA
FK^F&~s,t !1x1s

]^F&
]s

~s,t !G .
~54!

From hypothesisH2, we deduce that the variation of th
force F during the attachment of the myosin head no.i is

~d iF !a~x,$e l%,$e l%!52x1y* de i ,0
.

Then

~dF !a~x,$e l%,$e l%!52x1y* (
i 51

M

de i ,0
~55!
8-7
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and in Eq.~44!

^~dF !a&~s,t !52x1y* (
n50

M

sn~M2n!P~n,t !

52x1y* FM P~s,t !2s
]P

]s G . ~56!

So, Eq.~44! can be rewritten as

S d^F&
dt

~s,t ! D
a

5k10F ~12s!H s
]^F&
]s

~s,t !2M ^F&~s,t !J
2x1y* H sM P~s,t !2s2

]P

]s
~s,t !J G . ~57!

Finally, we calculate the contribution of the detachme
processes given by Eq.~43! with A5F. During the detach-
ment process of the myosin head no.i, the variation of the
force is given by

~d iF !d~x,$e l%,$e l%!5de i ,1
x1yi

because when the myosin head no.i, which is attached and
has an internal coordinateyi , gets detached, there is a dro
of the total force2(2x1yi). This formula leads to an exac
but untractable hierarchy of equations. Instead, we reaso
follows.

When the myosin head no.i gets detached at a certa
random timeT, the variation of the force isx1yi(T), where
yi(T) is the position of the internal coordinateyi of the myo-
sin head no.i at timeT. But, we have

yi~T!5y* 1E
T8

T dyi

dt
dt,

whereT8 is the random time of the previous attachment
this myosin head no.i, so that

Prob~T2T8.t !5e2k01t.

But during the time interval@T,T8#, the myosin head no
i is always attached to the actin filament, so that

dyi

dt
5

dx

dt
5

1

hA
F1

dj

dt

and

yi~T!5y* 1
1

hA
E

T8

T

Fdt1j~T!2j~T8!.

We make now a Markovian approximation, namely, w
assume thatk01 is large, sô T2T8&.k01

21 is small and we
approximateF during the time interval@T,T8#, for the myo-
sin head no.i by the final valueF(T) so that

yi~ t !;y* 1
^~T2T8!&

hA
F;y* 1

F

hAk01
, ~58!
01110
t

as

f

so that from Eqs.~35! and ~36!

~dF !d~x,$e l%,$yl%!5x1S y* 1
F

hAk01
D S (

i 51

M

de i ,1D ,

~59!

and we obtain

^~dF !d~s,t !&5x1y* s
]P

]s
1

x1

hAk01
s
]^F&
]s

. ~60!

Using Eq.~43!, we obtain using Eq.~60!,

S d^F&
dt

~s,t ! D
d

5~12s!k01

]^F&
]s

~s,t !1
x1

hA

]^F&
]s

1k01x1*
]P

]s
. ~61!

Finally, the equation of evolution of the force is obtaine
using Eqs.~52!, ~54!, ~57!, and~61!.

]^F&
]t

~s,t !5~12s!S k011k10s1
x1

hA
D ]^F&

]s

2S K

hA
1k10M ~12s! D ^F&1x1* y*

3Fk01

]^P&
]s

1k10s
2
]^P&
]s

2k10MsPG ~62!

which leads, fors51, to the equation for̂F&(t) @see Eq.
~A5!#.

By taking the derivative with respect tos for s51, we
obtain also an equation for]^F&/]sus51, namely,

d

dt S ]^F&
]s U

s51
D 52S k011k101

K1x1

hA
D ]^F&

]s U
s51

1k10M ^F&us511x1y*
]

]sU
s51

3F ~k011k10s
2!

]P

]s
2k10MsPG . ~63!

C. Evolution of Šx‹ and ŠF ‹

Equation~62! easily leads@see Eq.~A5!# to

^F~ t !&5
Mk10x1y*

k2
K

hA

@e2kt2e2(K/hA)t# ~64!

with

k5k101k01, ~65!
8-8
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which shows that̂ F&, starting from the initial value 0, is
always positive because in our convention,y* is negative. It
quickly reaches a maximum value, and then decreases e
nentially to 0,

^F~`!&50,

as it could be anticipated. Then the average position^x&(t)
of the actin can be studied by Eq.~50!. The exact value of
^x(t)& is given by Eq.~A9!. It is proved in Appendix A that
^x(t)& reaches a limit whent→`,

^x~`!&2x~0!52
Mk10x1y*

kK
.0, ~66!

wherex(0) satisfiesuF0u1Kx(0)50.
Moreover, if t→`, the attached myosin heads create

total force which is in average

uF0u1K^x~`!&.

BecauseuF0u1Kx(0)50, we see that the total force ex
erted by the myosin heads on the actin filament is

^F~`!&52
Mk10x1y*

k
. ~67!

Equation ~67! is rather natural, becauseMk10/k is the
average number̂N(`)& of attached myosin heads,2x1y*
is the force exerted by an attached myosin head when it
just attached, and in our Markovian aproximation (k01@0),
the force2x1y* is essentially the force exerted by an a
tached myosin head.

D. Correlations ŠNx‹ and ŠNF ‹

The stochastic theory developed previously is mainly u
ful for studying the correlations, which cannot be obtain
from simple arguments.

In fact, these are the correlations between the position
the force and the number of attached myosin heads. They
given by

^Nx&5
]^x&
]s

~s,t !U
s51

,

^NF&5
]^F&
]s

~s,t !U
s51

.

Their values are given by Eqs.~A16! and ~A21! for t5`,

^NF&~`!52
Mk10

2 k01x1y*

k2j
, ~68!

^Nx&~`!52
M2k10

2 x1y*

k2K
1M

k10

k S x~0!2
k10k01x1y*

hAk2j
D ,

~69!

with
01110
o-

a

as

-
d

or
re

j5k1
K1x1

hA
. ~70!

Note that the correlation betweenN andx is given by

^Nx&~`!2^N~`!&^x~`!&;2
Mk10

2 k01x1y*

hAk3j
.0,

which is proportional toM and to (hAk01
3 )21 because of the

value ofj in Eq. ~70!, for largehA andk01. Moreover, there
is clearly a positive correlation betweenN andF given by the
formula of Eq.~68! ~recall that^N(t)& decreases exponen
tially rapidly for larget).

VI. SECOND MOMENTS, WORK, AND EFFICIENCY

A. Diffusion and friction coefficient

The diffusion coefficientDA is related to the friction co-
efficient hA by the usual Einstein formula

DA5
kBT

hA
, ~71!

which is the condition of consistency to reach thermal eq
librium for the actin coordinatex, for a given configuration
of the myosin heads, in the high friction limit. Moreover,hA
is proportional to the total surface of the actin filament, w
the myosin heads which are attached to it. So it seems
sonable to write

hA5hA
01s(

i 51

M

de i ,1
,

wherehA
0 is the friction coefficient for the actin filament with

no attached myosin. Because we are interested only in
large time limit, we replace this expression by

hA5hA
01sM

k10

k
. ~72!

B. Second momentsŠF 2
‹ and ŠxF ‹

Obtaining the time-dependent expressions of these
ments needs lengthy and intricate calculations which will
published elsewhere. Their stationary values are given b

1

hA
^F2&~`!.KDA1~x1y* !2k10k01M /~k2hA!, ~73!

1

hA
^xF&~`!52DA. ~74!

C. The cycle for a single myosin head

Figure 2 represents a full cycle, in terms of free ener
for a single myosin head. The cycle starts when a giv
myosin head is attached to the actin filament. According
our hypothesisH2 in Sec. IV E, this takes place at a pointA,
8-9
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with y5y* at a certain timeT8. The myosin coordinatey
relaxes along the potential energy curveU (1), along the arc
AB and gets detached at a certain timeT, at a positiony(T).
After that time, an ATP molecule is attached and the f
energy increases bye0, to point C, above the potential en
ergy U (0) of the detached myosin head. According to o
hypothesisH1, the free myosin head releases instan
neously to is mechanical equilibrium positiony* at pointD,
and then, is attached again closing the cycle at pointA, while
the ATP molecule is hydrolyzed in ADP1Pi .

D. Work and efficiency

The work produced by the muscular fiber per unit time
the work of the mesoscopic forceuF0u1Kx, so this is

dW

dt
5~ uF0u1Kx!

dx

dt
. ~75!

We obtain

K dW

dt L 5uF0u
1

hA
^F&1

K

hA
^xF&.

If t is large, the first term in the right-hand side tends to
and the average power is given by Eq.~74!,

K dW

dt L 52KD. ~76!

This residual power is consumed by the fiber although
macroscopic motion has stopped. It is due to the diffus
effects.

Now, in the stationary state, the energy which is put in
system per unit time, is the energye0 of an ATP bond mul-
tiplied by the number of ATP bonds which are destroyed
unit time, which is also the number of detachment proces
per unit time, so the energy fueled in the system per u
time, due to the ATP molecules is

K dE

dt L 5e0^N&~ t !k01. ~77!

The efficiency is

R5

K dW

dt L
K dE

dt L
. ~78!

This efficiency is smaller than 1, as it should be, but t
is not so obvious. To show this, we rewrite the expression
dW/dt in the following way. We start from Eq.~75! and use

uF0u1Kx52F2(
i 51

M

de i ,1
x1yi .

But by Eq.~6!,
01110
e

r
-

,

s
n

e

r
es
it

s
r

dx5
1

hA
Fdt1dj, ~79!

wheredj is the white noise force, so that

~ uF0u1Kx!dx52
1

hA
F2dt2Fdj2(

i 51

M

de i ,1
x1yidx.

~80!

On the other hand, when the myosin head no.i is attached
to the actin filament,dyi5dx, so that

yidx5yidyi5dS yi
2

2 D 2
1

2
~dyi !

25dS yi
2

2 D 2
1

2
~dx!2.

Let us take the average of Eq.~80! and use the previous
relation. We notice that becausedj(t) is independent of the
past,

^Fdj&50.

Moreover (dx)2 is (dj)2 independent of the number o
myosin heads which are attached and so, because^(dj)2&
52DAdt @see Eq.~7!#,

^~ uF0u1kx!dx&52
1

hA
^F2&dt2K (

i 51

M

de i ,1
d„U (1)~yi !…L

1x1DA^N~ t !&dt. ~81!

Let us examine the behavior of this expression for largt.
The last termDA^N(t)&dt is of orderO(1) with respect

to M and so it is negligible compared to the first ter
2(1/hA)^F2&dt which is of orderO(M ) @see Eq.~73!#.
Moreover, for a single attached myosin head, the variat
2dU(1)(y) of the potential energy during a time interv
@T,T8# between an instantT8 of attachment and the follow
ing instant of detachmentT, is surely less then the valuee0
of an ATP bond energy. This is explained in Sec. VI C a
shown in Fig. 2. As a consequence, one has

2^dU(1)~yi !&<e0k01dt

and

2K (
i 51

M

de i ,1
dU(1)~y0!L <e0^N~`!&k01dt,

so that from Eqs.~81! and ~77!,

K dW

dt L 5 K ~ uF0u1kx!dx

dt L
<e0M

k10k01

k
2

1

hA
^F2&1O~1!

< K dE

dt L .

This proves thatR<1.
8-10
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VII. CONCLUSION

In this paper, we have defined a detailed microsco
model for the conversion of chemical energy into trans
tional mechanical energy for the contraction of a muscle.
have taken into account the fact that the actin filam
~which is set in motion! is coupled to a large number o
independent myosin molecules, and we have treated e
individual myosin molecule using its own internal degree
freedom. This led us to a system of Fokker-Planck equati
for the evolution of the probability distributions of the co
figuration of the system actin-myosin molecules. Using
kind of Markovian approximation which was justified in Se
V, we have been able to avoid an infinite hierarchy and
solve for the time evolution of the average and correlation
the three main physical quantities for the system, namely,
total number of attached myosin heads, the coordinate of
center of mass, and the total force on the actin filament
fact, we have introduced a reduced ‘‘coarse grained’’ desc
tion of the system. In particular, we have considered
work and the efficiency in the transient regime as well as
the stationary state.

The expressions for the work and the efficiency can
considered as the main results of this microscopic mode
fact, their calculations need the second moments and co
lations of the stochastic variables. These correlations ca
be obtained from a ‘‘mean field’’ model of muscular contra
tion when only one effective myosin head is conside
~whereas the mean values of the variable can be estimat
this way!. On the other hand, the efficiency of muscular co
traction is an important quantity in practice, and our theor
ical results should be compared to experimental obse
tions. This necessary comparison should use the exp
expression ofR obtained from Eq.~78! after lengthy calcu-
lations which will be given in a further publication. It in
cludes many parameters with clear physicochemical me
ing, but which may be difficult to measure individually.
can be expected that further progress in this direction
result from close collaboration with biologists.
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APPENDIX A: SOLUTIONS OF THE EQUATIONS FOR F
AND x

1. Calculation of Šx‹ and ŠF ‹

Using Eq.~46!, we obtain

]P

]s U
s51

5Mp~ t !5^N~ t !&. ~A1!

We assume that at timet50, no myosin head is attache
so thatp(0)50 and by Eq.~25!,

p~ t !5
k10

k
~12e2kt!, ~A2!
01110
ic
-
e
t

ch
f
s

a

o
f
e

he
n
-

e
n

e
In
re-
ot

d
in

-
t-
a-
it

n-

ll

with

k[k101k01. ~A3!

Then we need in Eq.~62!

~k011k10s
2!

]P

]s
2k10MsP5M @12p~12s!#M21

3@k01p1k10s~p21!#.

~A4!

For s51, this reduces to2Mk10e
2kt, and Eq.~62! be-

comes fors51,

d^F&~ t !

dt
52

K

hA
^F&~ t !2Mk10x1y* e2kt. ~A5!

This equation must be solved with the initial valu
^F&(0)50. Indeed at timet50, when the muscle is
stretched by the external force2uF0u, it goes to an equilib-
rium positionx(0) such that

2uF0u2Kx~0!50 ~A6!

and no myosin is attached, so there is no force exerted by
myosin and F(0)50. The solution of Eq.~A5! with
^F(0)&50 is

^F~ t !&[
Mk10x1y*

k2
K

hA

@e2kt2e2(K/hA)t#, ~A7!

which is always positive, sincey* ,0.
Recall here that we are in the large friction limit, so th

dominant term for larget is

^F~ t !&;2
Mk10x1y*

k2
K

hA

e2(K/hA)t. ~A8!

Then Eq.~50! for ^x(t)& can be solved immediately usin
Eq. ~A7! and the initial conditionx(0) is given by Eq.~A6!,

^x~ t !&5x~0!1
Mk10x1y*

khA2K FhA

K
~e2(K/hA)t21!

2
1

k
~e2kt21!G ~A9!

for t→1`, so we see that

^x~`!&5x~0!2
Mk10x1y*

kK
. ~A10!

We recall thaty* is negative according to our conven
tions, so clearlŷ x(`)& is larger thanx(0) as it should be.
8-11
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2. A lemma

Before continuing the calculations, we need a sim
lemma. Consider a differential equation

du

dt
52au1g,

u~0!50, ~A11!

wherea is a positive constant andg(t) is a function such
that for larget

g~ t !5g`1O~e2gt! ~g.0!. ~A12!

Then the solutionu(t) of Eq. ~A11! satisfies

u~ t ![
g`

a
1O~e2g8t! ~g8.0!. ~A13!

Indeed we define

u~ t !5v~ t !e2at,

so thatv satisfies

dv
dt

5g~ t !e2at,

and

u~ t !5e2atE
0

t

g~s!easds,

from which the result of Eq.~A13! follows.

3. Calculation of ­ŠF ‹Õ­szsÄ1 for large t

]^F&]sus51 satisfies Eq.~63! which is of the type~A11!.
At time t50 it is obviously 0. We study the asymptot
behavior of the inhomogeneous terms in Eq.~63!. First, we
know that ^F&us51 decreases exponentially@see Eq.~A8!#.
Then, using Eq.~A4!, we can compute

]

]sU
s51

S ~k011k10s
2!

]P

]s
2k10MsPD

5M ~M21!p@kp2k10#1Mk10~p21!

52M2pk10e
2kt2Mk01p

2.

So for t→`, this is 2Mk10
2 k01/k2 and the asymptotic

behavior of the inhomogeneous term of Eq.~63! is

g`52
Mk10

2 k01

k2
x1y* . ~A14!

Define

j5k1
K1x1

hA
. ~A15!
01110
e

Then using Eq.~A13!, we obtain

]^F&
]s U

s51

→2
Mk10

2 k01x1y*

k2j
. ~A16!

4. Calculation of ­2
ŠF ‹Õ­s2zsÄ1 for large t

For further use, we need to calculate this limit. First w
derive an equation for this quantity by taking the seco
derivative ins for Eq. ~62! and then takes51,

d

dt S ]2^F&

]s2 U
s51

D 522
]

]s F S k011k10s1
x1

hA
D ]^F&

]s G
2

K

hA

]2^F&

]s2 U
s51

12k10M
]^F&
]s

1x1y*
]2

]s2U
s51

S k01

]P

]s
1k10s

2
]P

]s

2k10MsPD
or

d

dt S ]2^F&

]s2 U
s51

D 52S 2k1
2x11K

hA
D ]2^F&

]s2 U
s51

12k10~M21!
]^F&
]s U

s51

1x1y*
]2

]s2U
s51

3S k01

]P

]s
1k10s

2
]P

]s
2k10MsPD .

~A17!

This equation~A17! is of the same type as Eq.~A11!, with

a52j2
K

hA
. ~A18!

We need the asymptotic behavior of the inhomogene
term in Eq.~A17!. Using Eq.~A4!, we have

]2

]s2U
s51

S ~k011k10s
2!

]P

]s
2k10MsPD

5M S ]2

]s2U
s51

@12p~12s!#M21D ~kp2k10!

12M S ]

]sU
s51

@12p~12s!#M21D k10~p21!.

But kp2k1052k10e
2kt is exponentially small so that th

asymptotic behavior is
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22M ~M21!
k10

2 k01

k2
.

Thus, using this expression and Eq.~A16!, the asymptotic
behavior for larget of the inhomogeneous term of Eq.~A17!
is

g`522M ~M21!
k10

2 k01

k2
x1y* S k10

j
11D , ~A19!

and from Eq.~A13!, we have

S ]2^F&

]s2 U
s51

D→22M ~M21!
k10

2 k01x1y*

k2S 2j2
K

hA
D S k10

j
11D .

~A20!

5. Calculation of ­Šx‹Õ­szsÄ1 for large t

This quantity is given by Eq.~51!. The inhomogeneous
terms of this equation are
,

n

i-

01110
k10M ^x&~ t !1
1

hA

]^F&
]s U

s51

,

which has the asymptotic behavior@using Eqs.~A10! and
~A16!#,

g`5k10M S x~0!2
Mk10x1y*

kK D2
Mk10

2 k01x1y*

hAk2j

or

g`52
M2k10

2 x1y*

kK
1Mk10S x~0!2

k10k01x1y*

hAk2j
D ,

so that, using Eq.~A13! with a5k,

]^x&
]s U

s51

→2
M2k10

2 x1y*

k2K
1M

k10

k S x~0!2
k10k01x1y*

hAk2j
D .

~A21!
.
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